a^2+64=1100

Simple and best practice solution for a^2+64=1100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+64=1100 equation:



a^2+64=1100
We move all terms to the left:
a^2+64-(1100)=0
We add all the numbers together, and all the variables
a^2-1036=0
a = 1; b = 0; c = -1036;
Δ = b2-4ac
Δ = 02-4·1·(-1036)
Δ = 4144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4144}=\sqrt{16*259}=\sqrt{16}*\sqrt{259}=4\sqrt{259}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{259}}{2*1}=\frac{0-4\sqrt{259}}{2} =-\frac{4\sqrt{259}}{2} =-2\sqrt{259} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{259}}{2*1}=\frac{0+4\sqrt{259}}{2} =\frac{4\sqrt{259}}{2} =2\sqrt{259} $

See similar equations:

| 12x-(4x+10)=38 | | 31+7x=-4-7(-4x+1) | | F(x)=8+2x | | -136=-8(x+8)-4x | | 1=7–2y | | 12x+-2=-4x+1 | | 49=-3d+7 | | 5x+43=9x+3 | | (4x=4)(5x-22) | | 1(x-7)=4+12x | | 4(2x+3)=6x+2 | | 12x+-1=-4x+1 | | 32+3x=-8(-4+2x) | | 12x+0=-4x+1 | | 3(2x+5)=2(x+4) | | 8t-4=5t+38 | | 6x+3-4x=2x+8-13 | | /Q=120–2p. | | 5a=4+0.25a | | (5x^2)+27x+35=0 | | x-5/5=x+2/10 | | 70=18-3x | | 1.10+0.25x=360 | | 44=9+5z | | 1400=3.14*r^2*30 | | 5(2p+5)=85 | | 12x+2=-4x+1 | | 12x+3=-4x+1 | | 7s-4=5s+14 | | F(-1)=3x+4 | | 12x+4=-4x+1 | | 6x-3x^2=15 |

Equations solver categories